پیشبینی تقاضای جهانی گاز طبیعی :توسعه مدل محاساباتی ترکیبی بر پایه شبکه عصبی مصنوعی
نویسندگان
چکیده مقاله:
Recently natural gas global market attracted much attention since it is cleaner than oil and also is cheaper than renewable energy sources. However, price fluctuations, environmental concerns, technological development, unconventional resources, energy security challenges, and shipment are some of the forces made energy market more dynamic and complex in the last decade. Studying of natural gas market's demand side behavior is targeted by this research to dedicate insights about plausible trends of global natural gas demands. This paper proposed a hybrid time series model which starts with data mining based techniques to detect input features and pre-processing data, then a neural network based prediction model is used to uncover global natural gas trends. 13 different features were studied and finally 6 features were selected as the most relevant feature containing: Alternative and Nuclear Energy, CO2 Emissions, GDP per Capita, Urban Population, Natural Gas Production, Oil Consumption. Finally, the proposed prediction model overcame other competitive models refer to five different error based evaluation statistics.
منابع مشابه
پیشبینی بارش ماهانه با مدل ترکیبی شبکه عصبی مصنوعی-موجک و مقایسه با مدل شبکه عصبی مصنوعی
بدون شک اولین قدم در مدیریت رودخانه پیشبینی بارش سطح حوضه آبریز میباشد. با این حال، با توجه به بالا بودن خاصیت تصادفی فرآیندها، بسیاری از مدلها هنوز هم به منظور تعریف چنین پدیدة پیچیدهای در زمینه مهندسی هیدرولوژیک توسعه داده میشوند. اخیراً شبکههای عصبی مصنوعی به عنوان یک برونیابی و درونیابی غیرخطی گسترده توسط هیدرولوژیستها مورد استفاده قرار میگیرد. در پژوهش حاضر، تجزیه و تحلیل موجک ...
متن کاملشناسایی دستکاری قیمت سهام از طریق مدل ترکیبی الگوریتم ژنتیک – شبکه عصبی مصنوعی و مدل SQDF
هدف این پژوهش، شناسایی دستکاری قیمت سهام در بورس اوراق بهادار تهران میباشد که از طریق مدل ترکیبی الگوریتم ژنتیک-شبکه عصبی مصنوعی (ANN-GA)[1] و مدل تابع تفکیکی درجه دوی تعدیل شده (SQDF)[2] انجام گرفته است. در این پژوهش از متغیرهای قیمت، حجم معاملات و سهام شناور آزاد برای تطبیق نتایج مدل و دادههای واقعی از دستکاری قیمت استفاده شده است. در مدل ترکیبی ابتدا دادههای مربوط به 316 شرکت از نخستین رو...
متن کاملارائه مدل تدریس اثربخش اساتید دانشگاه بر پایه تحلیل شبکه عصبی مصنوعی
تحقیق حاضر با هدف ارائه الگوی تدریس اثربخش اساتید دانشگاه آزاد اسلامی با بهرهگیری از تحلیل شبکههای عصبی مصنوعی انجام گرفت. پژوهش حاضر از حیث هدف کاربردی و از نوع طرحهای ترکیبی- اکتشافی است. جامعهی آماری تحقیق دانشجویان تحصیلات تکمیلی دانشگاه آزاد اسلامی واحد ارومیه میباشد که در قسمت کیفی تعداد 24 نفر از دانشجویان به روش نمونهگیری هدفمند و تا مرحله اشباع نظری یافتهها به شیوه گروههای کانو...
متن کاملپیشبینی تقاضای مسافرت هوایی بین شهری در ایران با استفاده از شبکه های عصبی مصنوعی
پیشبینی تقاضای حمل و نقل هوایی میتواند نقش مهمی را در برنامهریزیهای کلان و خرد یک کشور ایفا کند. در سطح کلان میتوان به اولویتبندی تخصیص بودجه های دولتی به شهرهای مختلف برای ایجاد زیرساختهای حمل و نقل هوایی مانند فرودگاه یا خرید و اجاره هواپیما اشاره کرد و در سطوح خرد برای فعالیتهایی مثل طراحی و برنامهریزی عملیات فرودگاه، تصمیم گیری شرکتهای هواپیمایی برای ورود به بازارهای جدید، افزایش ظرفیت خطوط...
توسعه شبکه عصبی مصنوعی ترکیبی به منظور انتخاب سبد محصولات در سازمانها
دنیای امروز شاهد رقابت فشرده سازمانها درحوزههای متنوع است و تصمیمگیری صحیح و بهینه،بخصوص در امور راهبردی مزیت رقابتی را برای هر سازمان به ارمغان میآورد. در این مقاله، مدلی برای یاری مدیران ارشد سازمان در اتخاذ تصمیمات راهبردی توسعه داده شده است. این مدل با استفاده از ترکیب رویکرد تصمیمگیری چندمعیاره فازی و شبکه عصبی مصنوعی ارائهشده و امکان شناسایی بهترین سبد محصولات برای سرمایهگذاری را...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 8 شماره 4
صفحات 0- 0
تاریخ انتشار 2019-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023